On the Langlands correspondence for symplectic motives
نویسندگان
چکیده
منابع مشابه
On the Langlands correspondence for symplectic motives
In this paper, we present a refinement of the global Langlands correspondence for discrete symplectic motives of rank 2n over Q. To such a motive Langlands conjecturally associates a generic, automorphic representation π of the split orthogonal group SO2n+1 over Q, which appears with multiplicity one in the cuspidal spectrum. Using the local theory of generic representations of odd orthogonal g...
متن کاملAn exotic Deligne-Langlands correspondence for symplectic group
Let G = Sp(2n,C) be a complex symplectic group. In the companion paper [math.AG/0601154], we introduced a (G × C × C)-variety N, which we call the exotic nilpotent cone. In this paper, we realize the Hecke algebra H of type C n with unequal parameters via equivariant algebraic K-theory in terms of the geometry of N. This enables us to establish a Deligne-Langlands type classification of “non-cr...
متن کاملAn exotic Deligne-Langlands correspondence for symplectic groups
Let G = Sp(2n,C) be a complex symplectic group. We introduce a G× (C)-variety Nl, which we call the l-exotic nilpotent cone. Then, we realize the Hecke algebra H of type C (1) n with three parameters via equivariant algebraic K-theory in terms of the geometry of N2. This enables us to establish a Deligne-Langlands type classification of simple H-modules under a mild assumption on parameters. As...
متن کاملOn the Local Langlands Correspondence
The local Langlands correspondence for GL(n) of a non-Archimedean local field F parametrizes irreducible admissible representations of GL(n, F ) in terms of representations of the Weil-Deligne group WDF of F . The correspondence, whose existence for p-adic fields was proved in joint work of the author with R. Taylor, and then more simply by G. Henniart, is characterized by its preservation of s...
متن کاملTHE JACQUET-LANGLANDS CORRESPONDENCE FOR GL2 Contents
1.1. Matching regular semisimple conjugacy classes. Let X(F ) = F × F×, viewed as the space of semisimple conjugacy classes in GL2(F ) via GL2(F ) → X(F ) sending γ 7→ (Tr(γ),det(γ)). Similarly we have D× → X(F ) sending γ′ 7→ (TrD/F (γ),NmD/F (γ′)), where TrD/F and NmD/F mean reduced trace and norm. For regular semisimple γ ∈ GL2(F ) and γ′ ∈ D×, we write γ ∼ γ′ if they have the same image in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Izvestiya: Mathematics
سال: 2016
ISSN: 1064-5632,1468-4810
DOI: 10.1070/im8431